在前面文章我们已经可以制作SM2证书了,主要应用了SM2签名验证算法和SM3摘要算法,在本文中主要介绍SM2公钥加密算法。这里我们使用SM2数字证书来做SM2非对称加密,然后使用硬件加密设备做解密,比如加密文件只能由指定的智能密码钥匙UKey才能解开。
SM2加密算法
SM2加密同样使用接收方公钥加密,公钥由一个曲线坐标点组成,在X.509证书中的共钥表示为04标记开始的2个32byte的BigInteger,即曲线点P(x,y)。SM2公钥加密算法比RSA相对复杂,加密结果由3个部分组成,SM2加密过程中使用了随机数,因此同样的明文数据每一次加密结果都不一样。SM2加密算法流程如下图所示。
根据国密推荐的SM2椭圆曲线公钥密码算法,首先产生随机数计算出曲线点C1,2个32byte的BigInteger大数,即为SM2加密结果的第1部分。第2部分则是真正的密文,是对明文的加密结果,长度和明文一样。第3部分是杂凑值,用来效验数据。按国密推荐的256位椭圆曲线,明文加密结果比原长度会大96byte。
SM2加密算法同样也可以基于使用BouncyCastle库实现。一般使用数字证书来标识身份,同时使用证书中公钥加密数据。如下SM2Cipher类是C#下SM2软算法实现。
SM2Cipher.cs1public class SM2Cipher
2...{
3 private int ct = 1;
4
5 private ECPoint p2;
6 private SM3Digest sm3keybase;
7 private SM3Digest sm3c3;
8
9 private byte[] key = new byte[32];
10 private byte keyOff = 0;
11
12 public SM2Cipher() ...{ }
13
14
15
16 private void Reset()
17 ...{
18 sm3keybase = new SM3Digest();
19 sm3c3 = new SM3Digest();
20
21 byte[] p;
22
23 p = p2.X.ToBigInteger().ToByteArrayUnsigned();
24 sm3keybase.BlockUpdate(p, 0, p.Length);
25 sm3c3.BlockUpdate(p, 0, p.Length);
26
27 p = p2.Y.ToBigInteger().ToByteArrayUnsigned();
28 sm3keybase.BlockUpdate(p, 0, p.Length);
29
30 ct = 1;
31 NextKey();
32 }
33
34 private void NextKey()
35 ...{
36 SM3Digest sm3keycur = new SM3Digest(sm3keybase);
37 sm3keycur.Update((byte)(ct >> 24 & 0x00ff));
38 sm3keycur.Update((byte)(ct >> 16 & 0x00ff));
39 sm3keycur.Update((byte)(ct >> 8 & 0x00ff));
40 sm3keycur.Update((byte)(ct & 0x00ff));
41 sm3keycur.DoFinal(key, 0);
42 keyOff = 0;
43 ct++;
44 }
45
46 public virtual ECPoint InitEncipher(ECPoint userKey)
47 ...{
48 BigInteger k = null;
49 ECPoint c1 = null;
50
51 if (1==1)
52 ...{
53 AsymmetricCipherKeyPair key = SM2CryptoServiceProvider.SM2KeyPairGenerator.GenerateKeyPair();
54 ECPrivateKeyParameters ecpriv = (ECPrivateKeyParameters)key.Private;
55 ECPublicKeyParameters ecpub = (ECPublicKeyParameters)key.Public;
56
57 k = ecpriv.D;
58 c1 = ecpub.Q;
59 }
60
61 p2 = userKey.Multiply(k);
62 Reset();
63
64 return c1;
65
66 }
67
68 public virtual void Encrypt(byte[] data)
69 ...{
70 sm3c3.BlockUpdate(data, 0, data.Length);
71 for (int i = 0; i < data.Length; i++)
72 ...{
73 if (keyOff == key.Length)
74 NextKey();
75
76 data[i] ^= key[keyOff++];
77 }
78 }
79
80 public virtual void InitDecipher(BigInteger userD, ECPoint c1)
81 ...{
82 p2 = c1.Multiply(userD);
83 Reset();
84 }
85
86 public virtual void Decrypt(byte[] data)
87 ...{
88 for (int i = 0; i < data.Length; i++)
89 ...{
90 if (keyOff == key.Length)
91 NextKey();
92
93 data[i] ^= key[keyOff++];
94 }
95 sm3c3.BlockUpdate(data, 0, data.Length);
96 }
97
98 public virtual void Dofinal(byte[] c3)
99 ...{
100 byte[] p = p2.Y.ToBigInteger().ToByteArrayUnsigned();
101 sm3c3.BlockUpdate(p, 0, p.Length);
102 sm3c3.DoFinal(c3, 0);
103 Reset();
104 }
105
106
107 /**//// <summary>
108 /// 使用SM2公钥加密数据
109 /// </summary>
110 /// <param name="pubKey"></param>
111 /// <param name="plaintext"></param>
112 /// <returns></returns>
113 public string Encrypt(ECPoint pubKey, byte[] plaintext)
114 ...{
115
116 byte[] data = new byte[plaintext.Length];
117 Array.Copy(plaintext, data, plaintext.Length);
118
119 ECPoint c1 = InitEncipher(pubKey);
120 Encrypt(data);
121
122 byte[] c3 = new byte[32];
123 Dofinal(c3);
124
125 string hexString = c1.X.ToBigInteger().ToString(16) + c1.Y.ToBigInteger().ToString(16)
126 + Org.BouncyCastle.Utilities.Encoders.Hex.ToHexString(data)
127 + Org.BouncyCastle.Utilities.Encoders.Hex.ToHexString(c3);
128
129 return hexString;
130
131 }
132
133 /**//// <summary>
134 /// 使用SM2解密数据
135 /// </summary>
136 /// <param name="privateKey"></param>
137 /// <param name="ciphertext"></param>
138 /// <returns></returns>
139 public byte[] Decrypt(BigInteger privateKey, string ciphertext)
140 ...{
141
142 string hexString = ciphertext;
143 string c1X = hexString.Substring(0, 64);
144 string c1Y = hexString.Substring(0 + c1X.Length, 64);
145 string encrypData = hexString.Substring(c1X.Length + c1Y.Length, hexString.Length - c1X.Length - c1Y.Length - 64);
146 string c3 = hexString.Substring(hexString.Length - 64);
147
148 byte[] data = SM2CryptoServiceProvider.StrToToHexByte(encrypData);
149
150 ECPoint c1 = CreatePoint(c1X, c1Y);
151
152 InitDecipher(privateKey, c1);
153 Decrypt(data);
154
155 byte[] c3_ = new byte[32];
156 Dofinal(c3_);
157
158 string decryptData = Encoding.Default.GetString(data);
159 bool isDecrypt = Org.BouncyCastle.Utilities.Encoders.Hex.ToHexString(c3_) == c3;
160
161 return (isDecrypt ? data : new byte[0]);
162 }
163
164
165 /**//// <summary>
166 /// 创建坐标点
167 /// </summary>
168 /// <param name="x"></param>
169 /// <param name="y"></param>
170 /// <returns></returns>
171 public static ECPoint CreatePoint(string x, string y)
172 ...{
173
174 BigInteger biX = new BigInteger(x, 16);
175 BigInteger biY = new BigInteger(y, 16);
176 ECFieldElement fx = new FpFieldElement(SM2CryptoServiceProvider.ecc_p, biX);
177 ECFieldElement fy = new FpFieldElement(SM2CryptoServiceProvider.ecc_p, biY);
178 ECPoint point = new FpPoint(SM2CryptoServiceProvider.ecc_curve, fx,fy);
179 return point;
180 }
181
182
183
184}
SM2解密算法
SM2解密算法是加密逆运算。首先需要从密文中取出加密结果的3部分值,然后通过私钥计算出 M'明文值,最后效验数据。SM2解密算法流程如下图所示。
SM2解密同样也可以使用软算法实现。但因为涉及到私钥运算,为保护私钥安全,建议在硬件设备中运行,例如UKey等存储介质这样可以更好的保护密钥安全。拿文件加密来说,首先拿UKey里面的加密证书加密,这部分可在应用系统内完成。解密的话则需要加密证书对应UKey才能做解密,由应用系统调用UKey解密接口,在物理硬件内完成数据解密,同时可以受设备Ping码保护。